The extent of pyrene excimer fluorescence emission is a reflector of distance and flexibility: analysis of the segment linking the LDL receptor-binding and tetramerization domains of apolipoprotein E3.

نویسندگان

  • Gursharan K Bains
  • Sea H Kim
  • Eric J Sorin
  • Vasanthy Narayanaswami
چکیده

Pyrene is a spatially sensitive probe that displays an ensemble of monomeric fluorescence emission peaks (375-405 nm) and an additional band (called excimer) at ~460 nm when two fluorophores are spatially proximal. We examined if there is a correlation between distance between two pyrenes on an α-helical structure and excimer/monomer (e/m) ratio. Using structure-guided design, pyrene maleimide was attached to pairs of Cys residues separated by ~5 Å increments on helix 2 of the N-terminal domain of apolipoprotein E3 (apoE3). Fluorescence spectral analysis revealed an intense excimer band when the probes were ~5 Å from each other with an e/m ratio of ~3.0, which decreased to ~1.0 at 20 Å. An inverse correlation between e/m ratio and the distance between pyrenes was observed, with the probe and helix flexibility also contributing to the extent of excimer formation. We verified this approach by estimating the distance between T57C and C112 (located on helices 2 and 3, respectively) to be 5.2 Å (4.9 Å from NMR and 5.7 Å from the X-ray structure). Excimer formation was also noted to a significant extent with probes located in the linker segment, suggesting spatial proximity (10-15 Å) to corresponding sites on neighboring molecules in the tetrameric configuration of apoE. We infer that oligomerization via the C-terminal domain juxtaposes the linker segments from neighboring apoE molecules. This study offers new insights into the conformation of tetrameric apoE and presents the use of pyrene as a powerful probe for studying protein spatial organization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

4-Aryl-2, 6-di(pyren-1-yl)pyridines: A facile procedure for synthesis and studying of fluorescence properties

Pyrene and its derivatives exhibit thermal stability, high extinction coefficients, excimer formation, high photoluminescence, long fluorescence lifetime, fluorophoric properties and enhanced charge carrier mobility which make them find applications in optoelectronic area and are useful as large planar synthetic building blocks in supramolecular chemistry. One of the approaches to overcome this...

متن کامل

Effect of Ubiquinol-10 on the Affinity of LDL to Its Receptor: A Model for Prevention of Atherogenesis

The affinity of low density lipoprotein(LDL) to its receptor is very important, because most of LDL-uptake pathway is done by the LDL receptor and the change in size of LDL particle and the modification in its components may affect the LDL affinity for its receptor. In this study, the effects of a powerful lipid-soluble antioxidant “ubiquinol-10” have been investigated on the affinity of LDL to...

متن کامل

Application of FITC for detecting the binding of antiangiogenic peptide to HUVECs

Angiogenesis is the generation of new blood vessels from the existing vasculature. The angiogenic programme requires the degradation of the basement membrane, endothelial cell migration and invasion of the extracellular matrix, with endothelial cell proliferation and capillary lumen formation before maturation and stabilization of the new vasculature. Angiogenesis is dependent on a delicate equ...

متن کامل

Effect of Ubiquinol-10 on the Affinity of LDL to Its Receptor: A Model for Prevention of Atherogenesis

The affinity of low density lipoprotein(LDL) to its receptor is very important, because most of LDL-uptake pathway is done by the LDL receptor and the change in size of LDL particle and the modification in its components may affect the LDL affinity for its receptor. In this study, the effects of a powerful lipid-soluble antioxidant “ubiquinol-10” have been investigated on the affinity of LDL to...

متن کامل

Apolipoprotein E Polymorphism in an Iranian Hypercholestrolemic Population

Apolipoprotein E (apo E) is a structural constituent of several serum lipoprotein classes. It plays an important role in lipid metabolism by acting as a ligand for low-density lipoprotein (LDL) and chylomicron remnant receptors. Three common alleles called e2, e3 and e4 have been described, which code for three protein isoforms (E2, E3 and E4). The polymorphism is clinically significant, and it...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 51 31  شماره 

صفحات  -

تاریخ انتشار 2012